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ABSTRACT
There is a lot of effort to make programming for HPC more
productive and we are to make our contribution. After gain-
ing some experience in programming preconditioned itera-
tive solvers in Fortran and MPI we propose new approach,
that is based on the mixed ideas from vector parallel lan-
guages and parallelizing compilers like HPF. We follow two
rules, first try to vectorize our code as much as possible and
then apply static analysis techniques to the new represen-
tation to get parallelized code automatically. This paper
describes our motivation and walks through major steps of
our approach without looking into much details. Our wish
is to get feedback from the community in early stage of the
research.

Categories and Subject Descriptors
E.1 [DATA STRUCTURES]: Distributed data structures;
F.3.2 [LOGICS ANDMEANINGS OF PROGRAMS]:
Semantics of Programming Languages—Program analysis

General Terms
Languages, Experimentation

Keywords
iterative solver, irregular problem, parallelizing compiler

1. INTRODUCTION
Iterative solvers of linear equations are always portrayed as
easy to parallelize when compared to direct solvers. These
algorithms exist for several decades and gained a lot of pop-
ularity, but their development is still done using explicit
communication commands in low-level languages. Proba-
bly, the reason is that this domain is too narrow to develop
specific language for it alone, while the patterns of parallel
algorithms from other domains are too complicated.

In the last years there has been a lot of interest towards
languages for HPC: Fortress, X10, and Chapel are trying

to provide HPC specific abstractions. Apart from that,
languages and libraries for vector parallel programming us-
ing Nested Data Parallelism (NDP) are gaining attention,
particularly Intel Array Building Blocks (ArBB) and Data-
Parallel Haskell. However, the latter are supposed for shared
memory architectures and this is not enough for iterative
solvers, which are mainly used on massively parallel com-
puters. A decade ago there was a lot of interest in data-
parallel languages and parallelizing compilers, all revolving
around High Performance Fortran (HPF). All these HPF
related approaches have eventually disappeared, because of
some technical and sociological mistakes as explained in [7].

This is our position paper about upcoming research that de-
scribes the approach different from the mentioned solutions.
Having some experience in programming parallel iterative
solvers [3, 9], we decided to develop a solution for iterative
solvers alone. It seems possible to express certain iterative
solvers in a vector parallel language, which expresses the
code using abstract high-level operations on arrays (higher
than in SIMD instruction-sets like SSE). The ideas similar to
those in HPF extensions can be used to automatically paral-
lelize such code. Automatic distribution seems complex and
often domain specific – we assume that some initial distri-
bution is given by user.

The paper first presents the domain of preconditioned itera-
tive solvers in Section 2, the related work is shortly described
in Section 3, then the new approach is described. Section
4 presents vectorized representation of some code from our
domain and Section 5 walks through some static analysis
techniques from our solution. The last section is about the
results and future work.

2. DOMAIN DESCRIPTION
While there are different iterative solvers and precondition-
ers, we have experience with two-level Schwarz precondition-
ers that combine Additive Schwarz preconditioner on sub-
domains and a coarse grid preconditioner: M−1 = M−1

AS +
M−1

C . This experience comes from the collaboration between
University of Bath and University of Tartu and the result is
the DOUG package [1].

2.1 Iterative solvers
Iterative solvers most often use some type of preconditioned
Krylov subspace method, e.g Conjugate Gradient (CG). They
use two main types of operations in its core iteration: vec-
tor dot product and sparse matrix vector multiplication.
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Figure 1: Two-level grid and overlaps

Vector dot product is very expensive for distributed mem-
ory systems, because it requires synchronization. Sparse
matrix-vector multiplication includes irregular access pat-
terns that requires communication with neighbor processes.
The communication-computation ratio largely improves when
preconditioner is added to the solver. Moreover, two-level
preconditioner allows for substantial overlap of computation
and communication.

2.2 Two-level grid
Iterative solvers usually solve problems that arise from the
discretizations of partial differential equations on 2D or 3D
domains. The final grid may be constructed top-down start-
ing from coarse mesh and refining it where necessary.

DOUG takes the opposite approach because it reads a sys-
tem matrix without any knowledge of the initial geometry.
It combines neighboring nodes using the matrix, which gives
a partitioning of the fine grid Wi, i = 1 . . . na (see parti-
tions separated with dotted lines on Figure 1). The coarse
grid is built as the dual graph of this partitioning where
each partition Wi corresponds to a single coarse grid node.
Next, the partitioning of the coarse grid Vi, i = 1 . . . ns is
performed using the same technique, combining neighboring
coarse nodes.

The two-step partitioning is done locally on each process af-
ter the initial grid and the system matrix A are distributed.
The partitions of both levels are used in preconditioners:
fine grid partitions as supports in coarse grid preconditioner
and coarse grid partitions as subdomains in Schwarz pre-
conditioner. Partitions are usually extended by a few layers
which creates overlaps (see Figure 1). This creates addi-
tional work in managing communication and synchroniza-
tion of the values before and/or after preconditioning.

2.3 Schwarz preconditioner
In Schwarz preconditioner the original domain is divided
into (non-)overlapping subdomains, usually large enough to
fit into one computer memory, although several subdomains
per process may in some cases give better results. On each
subdomain a process solves the local problem, limited to the
subdomain freedoms, and then injects it back to the whole
domain. The values on the overlap are just added together
in case of Additive Schwarz method

M−1
AS =

ns∑
i=1

RT
i A−1

i Ri.

The subdomain injection matrices Ri are also used in the
construction of local matrices Ai = RiART

i . These are just

minors of the system matrix A with the rows and columns
corresponding to the subdomain freedoms. Communication
is required on the overlap of the subdomains if they belong
to different processes.

2.4 Coarse grid preconditioner
Second level of the two-level preconditioner is based on the
coarse grid, which is constructed on top of the fine grid us-
ing so called coarse space basis function supports. These
supports is just another partitioning of the fine grid into
(non)overlapping partitions, though they are smaller than
subdomains. In DOUG the partitioning is done using smoothed
aggregation algorithm [11]. The coarse grid preconditioner
is then expressed as

M−1
C = RT

CA−1
C RC ,

where RC is the coarse space restriction matrix and the ma-
trix AC = RCART

C defines the problem for the coarse space.
After the problem is solved the solution is interpolated back
to the fine grid using interpolation matrix RT

C . The concep-
tual difference from the Schwarz preconditioner is that only
a single problem needs to be solved but it uses the values
from the whole grid and then interpolates them back – the
problem is not local.

There are quite sophisticated methods to construct coarse
grid preconditioners[13], but the implementation of the cor-
responding algorithm is often based on the overlaps of the
partitions of both levels.

3. RELATED WORK
Before describing the solution we’ll give an overview of the
existing solutions. We are not aware of any analogous at-
tempts, the closest is probably HPF with its extensions.

3.1 DUNE
One possible approach to simplify the programming of pre-
conditioners is to use some mesh library like DUNE [4] –
the Distributed and Unified Numerics Environment. DUNE
distinguishes overlapped regions and allows to exchange the
values associated with the regions. This is good approach
when overlaps are simple, it is not so in complex precondi-
tioners. Automatic calculation of array sections that need
to be exchanged is missing from library-based solutions, be-
cause a library does not have access to language constructs.

3.2 HPF and its extensions
HPF is the most famous data-parallel language with dis-
tributions given by a programmer and automatic commu-
nication generation. While HPF-1 standard and its imple-
mentations did not include support for irregular array dis-
tributions, HPF-2 did include required directives, but the
momentum was lost.

Much work has been put into data-parallel languages and
parallelizing compilers: Vienna-Fortran [12], Fortran D [10],
POLARIS [6], PARADIGM [8] to name some. It seems that
the approach is not easy but worthy if can be successfully
implemented. Automatic calculation of required communi-
cation is present in these solutions, however all of them allow
arbitrary code with access to single array elements and all



Algorithm 1 Sparse mv multiplication in ArBB

void Ax(const Matrix &A,
const dense<f64> &x,
dense<f64> &y)

{
dense<f64> colvals = gather(x, A.cols);
dense<f64> mvals = colvals * A.vals;
nested<f64> nmvals =

reshape_nested_offsets(mvals, A.nrows);
y = add_reduce(nmvals);

}

array creation y=zeros(N), y=copy_like(x)
array copy y=copy(x)
element-wise y=sqrt(x)
binary el-wise z=x+y, z=x*y, z=x==y
reduction r=reduce(x, op)
gather z=x[y]
scatter z[y]=x

combining scatter z=hreduce(y, x, op=’+’),
i.e. z[y]+=x

gather indices z=index(x)
set ∈ z=set_in(x,y)
set ∪ z=set_union(x,y)

inverse array z=inverse(x)

Table 1: array operations: x, y, and z are arrays

kind of loops. This complicates compile-time analysis, in-
deed most of the papers on HPF extensions are devoted to
some form of loop analysis.

3.3 Nested Data Parallelism
Recently there has been increased interest in Nested Data
Parallelism (NDP), namely Data-Parallel Haskell [5] and In-
tel Array Building Blocks [2] (ArBB). NDP represents irreg-
ular structures as nested arrays and allows a limited set of
irregular operations on the arrays. Algorithm 1 shows the
implementation of sparse matrix-vector multiplication in In-
tel ArBB.

The main observation here – though the arrays are read-
only and the semantics of each array operation is to create
new array, the final code fuses the operations together. In-
termediate arrays that are supposed by language semantics
may never be created, so the performance does not degrade.
Moreover, it may make easier code optimizations for the
target platform because all operations are high-level. Un-
preconditioned iterative solvers may already be expressed
by the current NDP implementations, however for precon-
ditioners more sophisticated irregular operations are needed.

4. VECTORIZED REPRESENTATION
One of the goals of our research is to express DOUG code as
much as possible using vectorized code, leaving parts with
unvectorized code for sequential execution. This requires
more abstractions than are currently present in the NDP
solutions. First, lets define the set of high-level vector oper-
ations for the new language (see Table 1).

First operations are intuitive, e.g. binary element-wise com-

Algorithm 2 Dot product and sparse mv multiplication

def dot(x,y):
z = x*y
return ops.reduce(z,’+’)

def Ax(A, x):
tmp = x[A.icols]*A.vals
y = ops.hreduce(A.irows, tmp, like=x)
return y

pare returns boolean array z. The gather operation z=x[y]
picks elements of x using index array y, the scatter operation
stores array x values at the locations specified by the index
array y. If two values collapse, combining scatter should be
used to specify reduction operator1, otherwise the result is
unspecified.

Last four operations are the most complex: z=index(x)
lists indices of true elements of boolean array x. The two
other operations treat arrays as sets: z=set_in(x,y) checks
for each x element whether its value is present in the array y,
z=set_union(x,y) combines two arrays as sets, i.e. du-
plicates are eliminated. The last operation z=inverse(x)
treats array as a function with integer co-domain and cre-
ates the array that reflects the inverse function. It is used
for mapping global to local subdomain indices in Schwarz
preconditioner.

Python was chosen as a prototype language, because of
handy NumPy library that works with numeric arrays and
Python ast package providing compiler front-end. Only lim-
ited set of Python constructs and NumPy functions may be
used. All of the basis array operations are defined in Python
by the ops package.

4.1 Data structures
Simple data structures, without inheritance, are allowed in
the language. Matrix is represented in triple format with
three arrays: irows, icols and vals, that are stored to a
SparseMatrix object.
class SparseMatrix:

def __init__(self,m,n,nnz):
self.m = m
self.n = n
self.nnz = nnz
self.irows = ops.zeros(nnz, int)
self.icols = ops.zeros(nnz, int)
self.vals = ops.zeros(nnz, float)

4.2 Vectorized code examples
Together with element-wise vector operations, solver uses
dot product and sparse matrix-vector multiplication. Algo-
rithm 2 shows the implementation, which is almost the same
as for Intel ArBB.

4.2.1 Schwarz preconditioner
Schwarz preconditioner requires operations that are not present
in the NDP libraries. Construction of the local matrix for
1combining scatter is sometimes referred to as histogram re-
duction, this is why its name is hreduce



Algorithm 3 Local matrix Ai for a single subdomain

def __init__(self, A, d):
r = ops.set_in(A.irows, d)
c = ops.set_in(A.icols, d)
tb = r * c
t = ops.index(tb)
irows = A.irows[t]
icols = A.icols[t]
d_inv = ops.inverse(d)
Al = sparse.SparseMatrix(d.size, d.size,

irows.size)
Al.irows = d_inv[irows]
Al.icols = d_inv[icols]
Al.vals = A.vals[t]
self.d = d
self.Al = Al

Algorithm 4 Application of Schwarz preconditioner for a
single subdomain

def apply_prec(self, r):
N_ITER=8
x = ops.zeros_like(r)
rl = r[self.d]
xl = stat.sym_gauss_seidel(self.Al, rl,

N_ITER)
x[self.d] = xl
return x

one subdomain and application of the preconditioner on
this subdomain are shown by Algorithm 3 and Algorithm
4. They use 3 out of 4 complex vector operations, and the
last – set_union operation – is needed to extend a domain
and create overlaps (see Algorithm 5).

Although, this is large part of Schwarz preconditioner, some
high level data abstraction, like nested array, is needed to
hold all subdomains and special loop operation that applies
the same function to each subdomain. This research still
needs to be done.

4.2.2 Coarse grid preconditioner
There is currently no attempt to implement coarse grid pre-
conditioner with vectorized code. Most of it can be vector-
ized, only sparse matrix-matrix multiplication seems hard
to abstract and parallelize.

4.3 Motivation for code analysis
We believe several code optimizations can be done using the
representation given above. Moreover, array distribution
and distributed array synchronization points can often be
derived from the code.

Algorithm 5 Add one layer to a domain

def add_layer(domain, A):
r = ops.set_in(A.irows, domain)
t = ops.index(r)
v = A.icols[t]
newDomain = ops.set_union(domain, v)
return newDomain

A.icolsx

x[A.icols]

A.vals

A.irows

tmp

y

subscripts

*
subscripts

same domain

Figure 2: Array relations in mv multiplication

4.3.1 Array relations
Matrix vector multiplication in Algorithm 2 induces certain
relations between the arrays (see Figure 2). First type of
relation, depicted with solid line, tells that the arrays are
aligned, i.e. equal length (same domain) and their corre-
sponding elements are expected to be present on the same
process for some operation, e.g. element-wise multiplica-
tion. The same relation appears in the gather operation,
where the indexing array A.icols is aligned with the re-
sulting array x[A.icols], and in the combining scatter op-
eration, where the indexing array A.irows is aligned with
the source array tmp. The alignment of x and y is derived
from the caller code.

Another type of relation is array subscription which appears
in gather and scatter operations. This is shown with arrowed
lines on Figure 2. In DOUG the distribution of matrix val-
ues is computed from the distribution of vector y and the
values of A.irows, so that the combining scatter is a lo-
cal operation. The communication is needed in the gather
operation, where A.icols subscripts x. Here the values of
x, that are not stored locally – the ghost values, need to
be updated before the gather operation can take place.

Note, that the roles of these two array subscription opera-
tions can be exchanged, so that the relation from the gather
operation is used for the computation of distribution and
the relation from the combining scatter operation for the
derivation of ghost values. In this case the communication
needs to be done as the final phase of the combining scatter
operation.

Algorithm 4 contains the function call (sym_gauss_seidel)
that cannot be parallelized. All the arrays that are passed to
or returned from it are completely local, so are rl and xl.
The array self.d is aligned with them through subscrip-
tion operations and hence should also be stored to a single
process. This array in another function in Algorithm 3 is
used to construct several other arrays using complex opera-
tions set_in, index and inverse. The exact distribution
and communication behavior is not yet defined for these op-
erations, although we assume the propagation of such infor-
mation using static code analysis may be helpful.

In general, there are usually more complex situations when
several subscription operations define the distribution and
the ghost values. In such cases overlaps, when elements
are replicated over several processes, are typical. Duplicate
exclusion has to be performed for some operations, and we
feel that this analysis is better addressed by the compiler



Algorithm 6 IR of the Ax() function

0 = A.icols : A(INT)
1 := x[0] : A(FLOAT)
2 = A.vals : A(FLOAT)
3 := 1 * 2 : A(FLOAT)
tmp = 3 : A(FLOAT)
5 = A.irows : A(INT)
6 = ops.hreduce : oF(hreduce)
7 = 6(5,tmp,x) : A(FLOAT)
y = 7 : A(FLOAT)
return = y : A(FLOAT)

and its supporting library.

4.3.2 Synchronization points
Currently, in our prototype the synchronization of distributed
arrays is done at the time of operation. By using code analy-
sis this point may be shifted in the code even to another sub-
routine, enabling more communication-computation over-
lap. In DOUG this kind of optimizations for the Schwarz
and coarse grid preconditioners are done explicitly, which
largely tangles the code.

The synchronization of an array may take different forms.
For example, DUNE [4] defines additive representation for
array x as x =

∑P−1
i=0 RT

i xi, where xi are local parts of
the array. Recall from Section 2 that the preconditioner is
defined as the sum of the preconditioners of both levels

z = M−1r = M−1
ASr + M−1

C r.

The sum of local arrays with additive representations gives
the array with additive representation, so the synchroniza-
tion may be shifted to the last minute. In DOUG this kind
of optimization is also done by the programmer.

5. COMPILE-TIME ANALYSIS
This section describes the foundations of compile-time anal-
ysis with some data-flow analysis schemes, which are used
in the solution. It only sketches the approach without going
into details.

5.1 Intermediate Representation
In order to analyze the code it must be represented in con-
venient format, e.g. three address code. Expressions in the
code are split into sequences of IR (Intermediate Representa-
tion) commands, which only accept variable names or block
variables as arguments. Algorithm 6 shows the IR code for
the Ax() function from Algorithm 2.

Block variables are temporary variables in block that appear
after splitting expressions into IR commands. These vari-
ables are simply named by the IR command index in the
block and written as numbers in the example.

The set of IR commands partly mirrors the array operations
from the previous section, some important IR commands are
listed in Table 2. Complex array operations do not have cor-
responding IR commands, they are just function calls and
are recognized by the ops module and their name. Binary
command may be applied to scalar or array types, field read

Alias x = y
Const x := c
Binary x := y ⊗ z
Call x = y(z1, . . . , zn)

AttrUse x = y.z
AttrDef x.y = z

SubscriptUse x := y[z]
SubscriptDef x[y] = z

Table 2: IR commands

l ap lace .genera te2D

pcg1.PCG1

sparse.SparseMatrix.__init__

pcg1

cnum.stat ionary.sym_gauss_seidel

sparse.Ax sparse .do tdecompositions.getSliced

pcg1.apply_prec

pcg1.SchwarzPrec.__init__

1 4

0 := ’100’

N  =  0

2 := ’2’

N_DOMAINS = 2

4  =  l ap lace .genera te2D

5 =  4(N)

6  =  5 . 0

i rows  =  6

8  =  5 . 1

icols = 8

1 0  =  5 . 2

va l s  =  10

12 := ’1’

13  :=  N -  12

14 := ’2’

15  :=  13  **  14

16 := ’1’

17  :=  N -  16

18 := ’2’

19  :=  17  **  18

20  =  i rows . s ize

21 =  sparse .SparseMatr ix

2 2  =  2 1 ( 1 5 , 1 9 , 2 0 )

A =  22

A.irows = irows

A.icols = icols

A.vals = vals

27  =  A .n

28  =  ops . ze ros

29 =  28(27, f loa t )

b  =  2 9

31 := ’0.35’

32  =  A .n

33 := ’3’

34  :=  32  /  33

35  =  A .n

36 := ’2’

37  :=  35  /  36

b[34:37]  :=  31

39 := ’0’

40 = decomps.getSl iced

41 = 40(N,N_DOMAINS,39)

doma ins  =  41

43 := ’0’

44  :=  domains[43]

45 =  SchwarzPrec(A,44)

p r e c 1  =  4 5

47 := ’1’

48  :=  domains[47]

49 =  SchwarzPrec(A,48)

p r e c 2  =  4 9

51 := ’Parallelize: b-domains’

52 = PCG1(A,b,TOLERANCE,MAX_IT...

x  =  5 2

54 =  sparse .Ax

55 =  54(A,x)

56  :=  b  -  55

r e s  =  5 6

3

0 = ops.zeros_l ike

1  =  0 (b)

x  =  1

3  =  sparse .Ax

4 = 3(A,x)

5  :=  b  -  4

r  =  5

7 := ’0’

i t  =  7

3 8

0 = A.irows

1 =  ops . se t_ in

2  =  1 (0 ,d )

r  =  2

4 = A.icols

5  =  ops . se t_ in

6  =  5 (4 ,d )

c  =  6

8 := r  * c

t b  =  8

10  =  ops . index

11  =  10 ( tb )

t  =  1 1

13 = A. i rows

14  :=  13 [ t ]

i rows  =  14

16 = A.icols

17  :=  16 [ t ]

icols  = 17

19  =  ops . inverse

20  =  19 (d )

d_inv  =  20

22  =  d . s i ze

23  =  d . s i ze

24  =  i rows . s ize

25 =  sparse .SparseMatr ix

2 6  =  2 5 ( 2 2 , 2 3 , 2 4 )

Al  = 26

28 := d_inv[irows]

29 = Al. i rows

29[None:None]  :=  28

31 := d_inv[icols]

32 = Al.icols

32[None:None]  :=  31

34 = A.vals

35  :=  34 [ t ]

36 = Al.vals

36[None:None]  :=  35

self.d = d

self.Al = Al

4

0  =  spa r se .do t

1  =  0 ( r , r )

2  =  ops . sqr t

3  =  2 (1 )

4  :=  3  >  t o l

5  :=  i t  <  max_i te r

6  :=  4  and  5

5

0 = apply_prec(prec1,r)

1 = apply_prec(prec2,r)

2  : =  0  +  1

z  =  2

4  =  spa r se .do t

5  =  4 ( r , z )

r h o  =  5

1 0

r e t u r n  =  x

6

0 := ’0’

1  : =  i t  = =  0

7

p  =  z

8

0 := rho /  rho_prev

b e t a  =  0

2  :=  be ta  *  p

3  : =  z  +  2

p  =  3

1 8

0 = sparse .Ax

1 = 0(A,p)

q  =  1

3  =  spa r se .do t

4  =  3(p ,q)

5  :=  rho  /  4

a l p h a  =  5

7 := a lpha *  p

8  : =  x  +  7

x  =  8

10 :=  a lpha *  q

11  :=  r  -  10

r  =  1 1

rho_prev  =  rho

14 := ’1’

1 5  : =  i t  +  1 4

i t  =  1 5

9

0 := ’__main__’

1  :=  __name__  ==  0

2 6

0 := ’Applies L{n_iter} iterat. . .

1  = np.zeros_l ike

2  =  1 (b)

x  =  2

4 = A.irows

5 = A.icols

6 = A.vals

7  =  A.n

8  =  A .nnz

9 = l ib.sym_gauss_seidel

10 = 9(4 ,5 ,6 ,b ,7 ,8 ,x ,n_i ter )

r e t u r n  =  x

1 6

0 = A.icols

1  :=  x[0]

2 = A.vals

3  :=  1  *  2

t m p  =  3

5 = A.irows

6  =  ops .h reduce

7  =  6(5 , tmp,x)

y  =  7

r e t u r n  =  y

3 2

0 := ’3’

N_ITER = 0

2 = ops.zeros_l ike

3  =  2 ( r )

x  =  3

5 = self .d

6  :=  r [5 ]

r l  =  6

8 = self.Al

9 = s ta t ionary.sym_gauss_seide. . .

10 = 9(8,rl,N_ITER)

x l  =  10

r e t u r n  =  x

3 1

0 := ’1e-10’

TOLERANCE = 0

2 := ’1000’

MAX_ITER = 2

<analysis.ir .FunctionDef insta. . .

<analysis.ir .FunctionDef insta. . .

3 4

0 := x  *  y

z  =  0

2 := ’+’

3  =  ops . reduce

4  =  3 (z ,2 )

r e t u r n  =  4

3 3

0 := ’1’

1 :=  N -  0

2 := ’2’

3  :=  1  ** 2

n  =  3

5 := ’5’

6 := ’1’

7 :=  N -  6

8 := ’2’

9  :=  7  ** 8

10  :=  5  *  9

11 := ’4’

12 := ’1’

13  :=  N -  12

14  :=  11  *  13

15  :=  10  -  14

n n z  =  1 5

17  =  ops . emp ty

18  =  17(nnz , in t ,n )

i rows  =  18

20  =  ops . emp ty

21  =  20(nnz , in t ,n )

icols  = 21

23  =  ops . emp ty

24  =  23(nnz , f loa t )

va l s  =  24

26 := ’0’

i n n z  =  2 6

28 := (irows,icols,vals,)

r e t u r n  =  2 8

2 7

0 := ’1’

1 := n_sect ions -  0

N_POINTS = 1

3 := ’1’

4  :=  n_domains  -  3

5 :=  over lap *  4

6 := N_POINTS - 5

NL_POINTS = 6

8 :=  <_ast .Lis t  object  a t  0x27. . .

doma ins  =  8

re tu rn  =  doma ins

3 5
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Figure 3: Control-flow graph from basic blocks

and write operations (AttrUse, AttrDef) are applied to ob-
jects.

5.2 Control-flow analysis
The classical approach in static analysis is to split analyzed
program/function into basic blocks, which contain only se-
quentially executed IR commands and do not have branch-
ing. All the branching is introduced in the control-flow
graph (CFG) that connects basic blocks based on the flow
of control (see Figure 3).

The control-flow graph is the main structure on which dif-
ferent types of data-flow analysis work. The idea is to walk
the graph and find constraints that hold on basic block en-
try/exit and inside between IR commands.

5.3 Data-flow analysis
In this section we give very brief introduction to data-flow
analysis and the schemes that are currently used by the so-
lution. Data-flow analysis computes data-flow values before
(IN[s]) and after (OUT[s]) each statement s. The value may
be pretty much anything of interest, e.g. the knowledge that
a variable can contain only one certain value irrespectively of
execution paths that lead to the statement (Constant Prop-
agation analysis) or the knowledge that a variable may still
be used after the statement at some following execution path
(Live Variable analysis).

Generally, in forward data-flow analysis:

• transfer function fs computes the changes to the data-



flow value when the statement s is executed OUT[s] =
fs(IN[s]),

• the IN value is the same as the OUT value of the pre-
vious statement in the basic block IN[si] = OUT[si−1],

• the transfer function of a block B is the composition of
statements transfer functions fB = fsn◦fsn−1◦· · ·◦fs1 ,

• the input value IN[B] of a basic block B is computed
by a join operator combining output values of its pre-
decessor blocks in the control-flow graph

IN[B] =
∧

B′ is a pred. of B

OUT[B′].

5.3.1 Points-to analysis
From the section about our motivation for code analysis it
may be clear that we need to track arrays in the code and
investigate in which operations they meet. The classical way
is to use Reaching Definitions, that tracks which definitions
of a variable may reach what code locations. The more
elaborate is the Pointer analysis that also tracks aliases and
object field references.

Pointer analysis finds which memory locations a pointer may
refer to. For languages like C it is extremely difficult, be-
cause C allows pointer arithmetics and pointer may refer to
anything. In our case we limit the model:

• a program contains variables and heap objects,

• a variable may point to a heap object,

• a heap object has fields that may point to other heap
objects but not variables.

Consider the following example with 2 definitions (d3 does
not act as definition):

d1: arr=ops.zeros(n)
d2: A=SparseMatrix()
d3: A.irows=arr

Here the first statement creates array heap object and arr
variable points to it, the second statement creates heap ob-
ject that is SparseMatrix instance, and the third state-
ment makes the irows field of the SparseMatrix instance
refer to the first array.

In our analysis we need somehow to represent heap objects,
and the usual way to do it by the statement where the object
is created. The variable arr then points to the heap object
d1, the variable A points to d2, and the field irows of the
heap object d2 points to d1. The program may execute the
same code several times and create multiple objects from
the same statement, however we do not distinguish them.
Our data-flow value is a map m, so that

m[x] = {d|variable x points to d}
m[(d′, f)] =

{
d|field f of the object d′ points to d

}
.

The transfer function for a statement s usually changes the
map OUT[s] = m′ = fs(m) = fs(IN[s]). If we ignore the
arguments that map to an empty set and represent the fact

m[a] = Y, Y 6= ∅ as the set element a→ Y , then our exam-
ple has the following data-flow values:

IN[d1] = ∅
OUT[d1] = {arr→ {d1}}
OUT[d2] = {arr→ {d1} , A→ {d2}}
OUT[d3] = {arr→ {d1} , A→ {d2} , (d2, irows)→ {d1}} .

The transfer function for the alias command d : x = y is

OUT[d][x] = IN[d][y],

the set with definitions representing heap objects, that the
variable may point to, just copied to the target variable x.
The transfer function for most IR commands d : x := c
creates new heap object and kills all other definitions with
the target variable x :

OUT[d][t] =
{
{d} if t = x

IN[d][t] otherwise
.

For the field read command d : x = y.z we have to get all
heap objects that y may refer to and combine all definitions
their z field may refer to:

OUT [d][t] =
{
∪d′∈IN [d][y]IN [(d′, z)] if t = x

IN [d][t] otherwise

The join operator is the union for all map arguments

IN[B][t] =
⋃

B′ is a pred. of B

OUT[B′][t].

5.3.2 Interprocedural analysis
Points-to analysis requires tracking of references to heap
objects in called procedure, otherwise any field of any ob-
ject passed to or indirectly accessible in the procedure may
change. This will make points-to analysis very imprecise, so
interprocedural analysis is required.

When a procedure is called, its parameter variables get def-
initions from the actual arguments and all field definitions
are copied to the start block of the function. On exit the
definitions of return value are copied to the target variable
of the function call command and all new field definitions
are reassigned.

If a procedure is called from several locations in the code,
the IN map of its start block and OUT map of its end block
get polluted by the definitions from all these locations. The
interprocedural analysis has to be context-sensitive and the
simplest way is to clone procedure for each call location.
Cloning-based context-sensitive interprocedural analysis dis-
tinguishes data-flow values for a procedure called from dif-
ferent locations. The implementation of this analysis is not
yet included in the solution but we are working on it.

5.4 Distribution propagation
After we know which array definitions may reach what code
locations, we may start to analyze how the arrays should be
distributed depending on the commands they are accessed
in. If we know the distribution of one array we may compute
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Figure 4: Graph of definition relations in CG

desirable distributions of other arrays – distribution propa-
gation.

For example, in command d : x = y +z all three arrays that
reach this command in the variables x, y, and z should be
distributed in the same way between processes. This is like
align directive in HPF languages, only implicit in the code
and not explicitly defined. The definitions in y and z are
symmetric and are related with Eq relation

Eq(d1, d2)∀d1 ∈ IN[d][y], ∀d2 ∈ IN[d][z].

The definitions in x are related to others with asymmetric
AEq relation

AEq(d1, d2)∀d1 ∈ IN[d][x], ∀d2 ∈ IN[d][y] ∪ IN[d][z].

The corresponding relations depicted as a solid line and a
line with brick at one end on Figure 4. The value inside
each definition are block number and IR command number
inside the block, which is the way definitions di are currently
stored. In case of context-sensitive interprocedural analysis
calling context must also be added.

One relation of special interest is array subscription by an-
other array d : x = y[z]. Knowing the distribution of y we
may calculate the distribution of z by the inspection of z
values. This way all the values needed for the operation will
be locally available, because the distribution of x is likely to
be the same as of z. The arrowed connections on Figure 4
represent indexing, one definition subscripts the definition
the arrow is pointing to.

6. RESULTS AND FURTHER WORK
As a result we have proof of concept application – CG algo-
rithm – which is analyzed by our framework and parallelized
by inserting required communication commands. The effi-
ciency and generality of the implementation is not under
consideration at the moment, we will turn to them after the
main concepts are in place.

Our next steps will be: finish context-sensitive interproce-
dural analysis, precisely describe all parts of the algorithm
and its limitations, and measure the efficiency of the ap-
proach. After that the coarse grid preconditioner is to be
vectorized and our framework should probably be expanded
by new types of analyses. Extending our framework to other
types of preconditioners, e.g. Algebraic Multigrid (AMG),

and algorithms, i.e. outside of iterative solvers, is possible
in the far future.

We will constantly inspect the state of recent HPC languages
and data-parallel frameworks and compare our approach
with other solutions. The feasibility and efficiency of our
solution is not yet clear.
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